Нормальная физиология: конспект лекцийСветлана Сергеевна Фирсова

С позиций нормальной физиологии нервная система рассматривается как возбудимая ткань: она способна менять трансмембранную разницу потенциалов при раздражении, а в некоторых случаях — спонтанно. Отдельно взятый нейрон находится в непрерывном процессе биоэлектрогенеза.

Многие ученые полагают, что в процессе эволюции человека речь возникла на основе подражания различным звукам и жестам. Речь человека, по их мнению, опосредована системой зеркальных нейронов, обнаруженных в зоне Брока человеческого головного мозга. Традиционно она связывается с речью.

Зеркальные нейроны позволяют людям подражать друг другу и, вероятно, понимать еле уловимые движения губ и языка других. Это дает толчок для эволюционного развития языковых способностей. На поведенческом уровне речь можно рассматривать как сложнейшую способностью к оперативному созданию двигательных программ для артикуляционных органов.

Нормальная физиология: конспект лекцийСветлана Сергеевна Фирсова

Таким образом, с помощью зеркальных нейронов мозга через процесс подражания человек учится говорить и понимать речь. Нарушение работы этих нейронов может приводить к различного рода психическим расстройствам, связанным с проблемами в речи, в том числе и к аутизму.

Ингибирующие синапсы

Этот тип синапса несколько сложнее. Это будет дано в следующем примере: представьте, что вы достаете из духовки очень горячий поднос. Вы носите варежки, чтобы не обжечься, однако они тонкие и жар начинает их превышать. Вместо того, чтобы бросать лоток на землю, старайтесь немного поддерживать тепло, пока не оставите его на поверхности.

Реакция абстиненции нашего организма до того, как болезненный стимул заставил бы нас освободить объект, даже при этом мы контролировали этот импульс. Как происходит это явление?

Тепло, поступающее из лотка, воспринимается, увеличивая активность возбуждающих синапсов на двигательных нейронах (как объяснено в предыдущем разделе). Однако этому возбуждению противодействует торможение, исходящее от другой структуры: нашего мозга.

Это посылает информацию, указывающую, что, если мы уроним лоток, это может быть полной катастрофой. Поэтому сообщения направляются в спинной мозг, которые предотвращают рефлекс вывода.

Для этого аксон нейрона головного мозга достигает спинного мозга, где его терминальные кнопки синапсуются тормозящим интернейроном. Это выделяет тормозной нейромедиатор, который снижает активность двигательного нейрона, блокируя абстинентный рефлекс.

Важно отметить, что это только примеры. Процессы действительно более сложные (особенно тормозные), в них участвуют тысячи нейронов..

и развитие нейрона в онтогенезе.

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки.

Вопрос о делении самих нейронов в настоящее время остаётся дискуссионным. как и сама целесообразность этого процесса в сформировавшемся организме. Регенерация же поврежденных отростков со стороны тела клетки—есть факт, вполне доказанный. Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы—«конус роста», которое, видимо, и прокладывает путь через окружающую ткань. Конус роста представляет собой уплощенную часть отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1—0,2 мкм и длину до 50 мкм в длину. Для сравнения вспомним, что диаметр эритроцита крови человека равен 7,3 мкм. Широкая и плоская область конуса роста имеет ширину и длину около 5 мкм. Промежутки между микрошипиками покрыты складчатой мембраной.

Читайте также:  Для чего делают энцефалограмму головного мозга

Микрошипики находятся в постоянном движении. Некоторые из них втягиваются в конус, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов, митохондрии, , микротрубочки и нейрофиламенты, подобные таковым теле нейрона.

Вероятно, микротрубочки, нейрофиламенты и актиновые нити (см. ниже) удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Новый мембранный материал добавляется, видимо у окончания. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место в нервных сетях..

Нервные волокна (мякотные и безмякотные) — строение и функции. Проведение возбуждения по нерву

Предыдущая12345678910111213141516Следующая

Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки – дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на мякотные, имеющие миелиновую оболочку, и безмякотные. Эта оболочка формируется шванновскими клетками, являющимися видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Одна шванновская клетка образует оболочку на 1 мм нервного волокна. Участки, где оболочка прерывистая, т.е. не покрыта миелином, называют перехватами Ранвье. Ширина перехвата 1 мкм.

Функционально все нервные волокна делятся на 3 группы:

1. Волокна типа А – это толстые волокна, имеющие миелиновую оболочку.

В эту группу входят 4 подтипа:

А альфадвигательные волокна скелетных мышц и афферентные нервы, идущие от мышечных веретен – рецепторов растяжения. Скорость проведения 70-120 м/с.

А бета – афферентные волокна, идущие от рецепторов давления и прикосновения кожи. Скорость 30-70 м/с.

А гамма – эфферентные волокна, идущие к мышечным веретенам (15-30 м/с).

А дельта – афферентные волокна от температурных и болевых рецепторов кожи (12-30 м/с).

2. Волокна группы Втонкие миелиновые волокна, являющиеся преганглионарными волокнами вегетативных эфферентных путей. Скорость проведения 3-18 м/с.

3. Волокна группы Сбезмиелиновые постганглионарные волокна вегетативной нервной системы. Скорость 0,5-3 м/с.

Проведение возбуждения по нервам подчиняется следующим законам:

1. Закон анатомической и физиологической целостности нервов, т.е. нерв способен выполнять свою функцию лишь при обоих этих условиях. Первые нарушения при перерезке, вторые – при действии веществ, блокирующих проведение, например, новокаин.

Читайте также:  Височная эпилепсия у детей

2. Закон двустороннего проведения возбуждения. Оно распространяется в обе стороны от места раздражения. В организме чаще всего возбуждение по афферентным путям идет к нейрону, а по эфферентным – от нейрона. Такое распространение называется ортодромным. Очень редко возникает обратная или антидромное распространение возбуждения.

3. Закон изолированного проведения. Возбуждение передается с одного нервного волокна на другое волокно, входящее в состав этого же нервного ствола.

4. Закон без декрементного проведения. Возбуждение проводится по нервам без декремента, т.е. без затухания. Следовательно, нервные импульсы не ослабляются, проходя по нервам.

5. Скорость проведения прямо пропорциональна диаметру нервов.

Нервные волокна обладают свойствами электрического кабеля, у которого не очень хорошая изоляция. В основе механизма проведения возбуждения лежит возникновение местного тока. В результате генерации потенциала действия в аксонном холмике и реверсии мембранного потенциала, мембрана аксона приобретает положительный заряд. Снаружи она становится отрицательной, внутри положительной. Мембрана нижележащего невозбужденного аксона заряжена противоположным образом. Поэтому между этими участками по наружной и внутренней поверхностям мембран начинают проходить местные токи. Эти токи деполяризуют мембрану нижележащего невозбужденного участка нерва до критического уровня, и в нем также генерируется потенциал действия. Затем процесс повторяется и возбуждается более отдаленный участок нерва и т.д.

Так как по мембране безмякотного волокна местные токи текут не прерываясь, то такое проведение называется непрерывным. При непрерывном проведении местные токи захватывают большую поверхность волокна, поэтому им требуется длительное время для прохождения по участку волокна. В результате дальность и скорость проведения по безмякотному волокну небольшая.

В мякотных волокнах участки, покрытые миелином, обладают большим электрическим сопротивлением. Поэтому непрерывное проведение потенциала действия невозможно. При генерации потенциала действия местные токи текут лишь между соседними перехватами. По закону «все или ничего» возбуждается ближайший к аксонному холмику перехват Ранвье, затем соседний нижележащий перехват и т.д.

Такое проведение называется сальтаторным (прыжком). При этом механизме ослабление местных токов не происходит, и нервные импульсы распространяются на большее расстояние, с большой скоростью.

Предыдущая12345678910111213141516Следующая

Date: 2015-07-02; view: 551; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Регистрация активности нейронов

Основная статья: Регистрация активности нейронов

Одним из самых распространенных методов регистрации активности нейронов является электроэнцефалография. Связь ЭЭГ с элементарными электрическими процессами на уровне нейрона, безусловно, нелинейная. Предполагается, что ЭЭГ является результатом сложной суммации электрических потенциалов целостного нейронного ансамбля. Расчетным путем установлено, что активность, регистрируемая под одним электродом на поверхности головы, отражает суммацию постсинаптических потенциалов нейронов коры на площади 100—200 мм2 34.

Footnotes

  1. Wang XJ (2010). “Neurophysiological and computational principles of cortical rhythms in cognition”. Physiol Rev. 90 (3): 1195–1268. doi:
  2. Nunez PL, Srinivasan R (1981). Electric fields of the brain: The neurophysics of EEG. Oxford University Press.
  3. Бреже М. Электрическая активность нервной системы : пер. с англ. — М. : Мир, 1979. — 264 с.
  4. Кропотов Ю. Д. Количественная ЭЭГ, когнитивные вызванные потенциалы мозга человека и нейротерапия : пер. с англ. — Донецк : Издатель Заславский А. Ю., 2010. — 512 с.
Читайте также:  Болезнь Кенига коленного сустава или рассекающий остеохондрит

Какой витамин участвует в проведении нервного импульса

Нервный импульс

(лат. nervus нерв; лат. impulsus удар, толчок) — волна возбуждения, распространяющаяся по нервному волокну; единица распространяющегося возбуждения.

Нервный импульс обеспечивает передачу информации от рецепторов к нервным центрам и от них к исполнительным органам — скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внутренней и внешней секреции и т. д.

Сложная информация о действующих на организм раздражениях кодируется в виде отдельных групп Нервных импульсов — рядов. Согласно закону «Все или ничего» (см.) амплитуда и длительность отдельных Нервных импульсов, проходящих по одному и тому же волокну, постоянны, а частота и количество Нервных импульсов в ряду зависят от интенсивности раздражения. Такой способ передачи информации является наиболее помехоустойчивым, т. е. в широких пределах не зависит от состояния проводящих волокон.

Распространение Нервных импульсов отождествляется с проведением потенциалов действия (см. Биоэлектрические потенциалы). Возникновение возбуждения может быть результатом раздражения (см.), напр, воздействие света на зрительный рецептор, звука на слуховой рецептор, или процессов, протекающих в тканях (спонтанное возникновение Н. и.). В этих случаях Н. и. обеспечивают согласованную работу органов при протекании какого-либо физиологического процесса (напр., в процессе дыхания Н. и. вызывают сокращение скелетных мышц и диафрагмы, результатом чего являются вдох и выдох, и т. д.).

В живых организмах передача информации может осуществляться и гуморальным путем, посредством выброса в русло крови гормонов, медиаторов и т. п. Однако преимущество информации, передаваемой при помощи Н. и., состоит в том, что она более целенаправленна, передается быстро и может быть точнее закодирована, чем сигналы, посылаемые гуморальной системой.

Факт, что нервные стволы являются путем, по к-рому передаются влияния от мозга к мышцам и в обратном направлении, был известен еще в эпоху античности. В средние века и вплоть до середины 17 в. считалось, что по нервам распространяется некая субстанция, подобная жидкости или пламени. Идея о электрической природе Н. и. возникла в 18 в. Первые исследования электрических явлений в живых тканях, связанных с возникновением и распространением возбуждения, были осуществлены Л. Гальвани. Г. Гельмгольц показал, что скорость распространения Н. и., к-рую ранее считали близкой к скорости света, имеет конечное значение и может быть точно измерена. Германн (L. Hermann) ввел в физиологию понятие потенциала действия. Объяснение механизма возникновения и проведения возбуждения стало возможным после создания С. Аррениусом теории электролитической диссоциации. В соответствии с этой теорией Бернштейн (J. Bernstein) предположил, что возникновение и проведение Н. и. обусловлено перемещением ионов между нервным волокном и окружающей средой. Англ. исследователи А. Ходжкин, Б. Катц и Э. Хаксли детально исследовали трансмембранные ионные токи, лежащие в основе развития потенциала действия. Позже стали интенсивно изучаться механизмы работы ионных каналов, по к-рым происходит обмен ионами между аксоном и окружающей средой, и механизмы, обеспечивающие способность нервных волокон проводить ряды Н. и. разного ритма и продолжительности.